Available online at www.sciencedirect.com # **ScienceDirect** **CERAMICS**INTERNATIONAL Ceramics International 42 (2016) 3701–3705 www.elsevier.com/locate/ceramint #### Short communication # Low-firing and microwave dielectric properties of Na₂YMg₂V₃O₁₂ ceramic Huaicheng Xiang^a, Liang Fang^{a,*}, Xuewen Jiang^a, Chunchun Li^{a,b,**} ^aState Key Laboratory Breeding Base of Nonferrous Metals and Specific Materials Processing, Guangxi Universities Key Laboratory of Non-ferrous Metal Oxide Electronic Functional Materials and Devices, College of Material Science and Engineering, Guilin University of Technology, Guilin 541004, China ^bCollege of Information Science and Engineering, Guilin University of Technology, Guilin 541004, China Received 5 October 2015; received in revised form 28 October 2015; accepted 29 October 2015 Available online 6 November 2015 #### Abstract A low-firing microwave dielectric ceramic $Na_2YMg_2V_3O_{12}$ with garnet structure was prepared via the conventional solid-state reaction method. X-ray diffraction data shows that $Na_2YMg_2V_3O_{12}$ ceramic crystallized into a cubic garnet structure with a space group Ia-3d. Dense $Na_2YMg_2V_3O_{12}$ ceramic with a relative density of 95.4% could be obtained when sintered at 850 °C and exhibited the optimum microwave properties with a relative permittivity of 12.3, a quality factor of 23,180 GHz (at 10.2 GHz), and a nearly zero τ_f value of -4.1 ppm/°C. $Na_2YMg_2V_3O_{12}$ was found to be chemically compatible with silver electrode when sintered at 850 °C. These merits make $Na_2YMg_2V_3O_{12}$ a good microwave dielectric ceramic with potential applications in LTCC technology. Keywords: Microwave dielectric ceramics; Garnet structure; Na₂YMg₂V₃O₁₂; LTCC # 1. Introduction In recent years, low-temperature co-fired ceramics (LTCC) technology plays a key pole in the fabrication of miniature multilayer devices. The microwave dielectric materials used in the fabrication of LTCC devices have to be sintered below the melting points of the inner electrodes such as Ag electrode (961 °C) [1–4]. Meanwhile, the excellent substrate materials in microwave integrated circuits should also have a low dielectric constant (ε_r) to reduce the signal transmit delay, a high quality factor $(Q \times f)$ for frequency selectivity, and a near-zero temperature coefficient of resonant frequency (τ_f) for temperature stability [5–7]. Up to now, numerous microwave ceramics that could be well densified at temperatures lower than 960 °C E-mail addresses: fanglianggl001@aliyun.com (L. Fang), lichunchun2003@126.com (C. Li). have been developed, such as V_2O_5 -based [8,9], TeO_2 -based [10,11], Bi_2O_3 -based [12,13], Li_2O -based [14], WO_3 -based [15] systems. In our previous work, some garnet vanadates with a general formula A₃B₂V₃O₁₂ were investigated and reported with good microwave dielectric properties, such as NaCa₂Mg₂V₃O₁₂ $(\varepsilon_r = 10, \ Q \times f = 50,600 \text{ GHz} \text{ and } \tau_f = -47 \text{ ppm/}^{\circ}\text{C})$ [16] and LiCa₃MgV₃O₁₂ (ε_r =10.5, $Q \times f$ =74,700 GHz and τ_f = -61 ppm/°C) [17]. The combination merits of low sintering temperatures and promising microwave dielectric properties opens up their possible applications in LTCC technology. Yao et al. [18,19] firstly reported the microwave dielectric properties of some $Ca_5A_4(VO_4)_6$ (A=Mg, Zn, and Co) garnets with high quality factors (49,400-95,200 GHz), low relative permittivities (9.2–11.7), and large negative temperature coefficients of resonant frequency (-50 to -83 ppm/°C). However, the large negative τ_f values are problematic because temperature compensation needs additional mechanical structures or electrical circuits, which would impede their practical applications to a large extent. In our previous work, near-zero τ_f garnets were achieved by compensating the large negative τ_f with CaTiO₃ having a positive one ($\sim +800 \text{ ppm/}^{\circ}\text{C}$). This ^{*}Corresponding author. ^{***}Corresponding author at: State Key Laboratory Breeding Base of Nonferrous Metals and Specific Materials Processing, Guangxi Universities Key Laboratory of Non-ferrous Metal Oxide Electronic Functional Materials and Devices, College of Material Science and Engineering, Guilin University of Technology, Guilin 541004, China. approach, in spite of the effective adjustment of τ_f values, could cause an abrupt degradation of the quality factor. If different thermal expansion (different compositions), different thermal conductivity, and increasing reaction possibility with the inner electrode are taken into account, this method is not desirable. Thus, searching for microwave ceramics with intrinsic low thermal coefficient of resonance frequency is extremely important. More recently, Zhou *et al.* [20] developed a temperature stable garnet vanadate Na₂BiMg₂V₃O₁₂ with a near-zero $\tau_f \sim +8.2$ ppm/°C, a $\varepsilon_r \sim 23.2$ and a $Q \times f \sim 3700$ GHz. Therefore, it is worthwhile to investigate the Na₂M³⁺Mg₂V₃O₁₂ system with an attempt to search for novel temperature stable microwave dielectric ceramics. In the present work, a garnet vanadate Na₂YMg₂V₃O₁₂ ceramic was prepared and its sintering behavior, microwave dielectric properties, and the chemical compatibility with silver electrodes were studied. #### 2. Experimental procedure Na₂YMg₂V₃O₁₂ ceramic was prepared by a conventional solid-state reaction of Na₂CO₃ (99%, Guo-Yao Co. Ltd., Shanghai, China), Y₂O₃ (99.99%, Guo-Yao Co. Ltd., Shanghai, China), MgO (99%, Guo-Yao Co. Ltd., Shanghai, China) and NH₄VO₃ (> 99%, West Long Chemical Co., Ltd., Guangdong, China). Prior to weighting, MgO was heated at 900 °C for 2 h to remove moisture. Stoichiometric powers were weighted and mixed by ball milling for 4 h in alcohol medium using stabilized zirconia balls. The power mixture was dried and calcined at 760 °C for 4 h in air. The calcined powders were re-milled for 4 h and after drying, the polyvinyl alcohol (PVA, 10 vol%) was added to the powders as binder. Then the powders were pressed into cylinders (12 mm in diameter and 7 mm in height) under a pressure of 200 MPa. The samples were heated to 550 °C for 2 h at a heating rate of 1.5 °C/min to remove the organic binder and sintered from 780 °C to 880 °C for 4 h in air. The crystal structure of the specimens was identified using an X-ray diffractometer ($CuK\alpha I$, 1.54059 Å, Model X'Pert PRO, PANalytical, Almelo, Holland) with $CuK\alpha$ radiation and a monochromator. The bulk densitie of the sintered ceramics were determined by the Archimedes method. The surface micrographs of the samples were observed by scanning electron microscope (FE-SEM, Model S4800, Hitachi, Japan). The microwave dielectric properties were measured using a network analyzer (Model N5230A, Agilent Co., Palo Alto, Canada) and a temperature chamber (Delta 9039, Delta Design, San Diego, CA). The temperature coefficient of resonant frequency (τ_f) was measured in the temperature range from 25 °C–85 °C. # 3. Results and discussion Fig.1 shows the XRD pattern of Na₂YMg₂V₃O₁₂ powders calcined at 760 °C for 4 h. The observed peaks matched well with the standard JCPDS Card no. 00-049-0412, and no additional peaks were observed. The indexing was based on Fig. 1. The powder XRD pattern of Na₂YMg₂V₃O₁₂ calcined at 760 °C for 4 h. the standard JCPDS card. This result means that single-phase Na₂YMg₂V₃O₁₂ with a cubic garnet structure with space group of *Ia-3d* (230) could be formed at 760 °C. Fig.2 shows the SEM micrographs and the relative densities of Na₂YMg₂V₃O₁₂ ceramic sintered at different temperatures. As shown in Fig.2(a), a porous microstructure with small grains \sim 3 µm was observed in the ceramic sintered at 780 °C. With the increasing sintering temperature, the grain size increased along with a significant decrease in the porosity. The sample sintered at 850 °C exhibited a well dense microstructure with average grain size in the range of 3–5 µm. When the sintering temperature increased to 880 °C, the grain melting was observed. Fig.2(f) shows the relative density of Na₂YMg₂V₃O₁₂ ceramics sintered at different temperatures. With the increase in sintering temperature, the relative density of Na₂YMg₂V₃O₁₂ ceramic increased initially, reached a maximum value $\sim 3.51 \text{ g/cm}^3$ (about 95.4% of the theoretical density $\sim 3.68 \text{ g/cm}^3$) at 880 °C, then slightly decreased with further increasing sintering temperature. The variation in the microwave dielectric properties $(\varepsilon_r, Q \times f, \text{ and } \tau_f)$ of Na₂YMg₂V₃O₁₂ ceramics as a function of the sintering temperature are shown in Fig.3. The change in the relative permittivity and quality factor showed a similar trend as that of the relative density. ε_r increased from 11.8 to 12.3 as the sintering temperature increased from 780 °C to 850 °C, and then slightly decreased. It is reported that the relative permittivity mainly depends on the composition, grain size and the density [21]. The largest ε_r value was obtained at which temperature the highest density was achieved. The influence of the porosity on the microwave permittivity could be eliminated by applying Bosman and Havinga's correction [22,23] as shown in Eq. (1) $$\varepsilon_{corrected} = \varepsilon_m (1 + 1.5p) \tag{1}$$ where, p is the fractional porosity; $\varepsilon_{corrected}$ and ε_{m} are the corrected and measured values of permittivity, respectively. The $\varepsilon_{corrected}$ is about 13.15 for Na₂YMg₂V₃O₁₂ ceramic. Furthermore, ε_{r} can be interpreted by the sum of ionic polarizability of individual ions (α_{D}^{T}) and molar volume (V_{m}) Fig. 2. SEM micrographs and the relative density of $Na_2YMg_2V_3O_{12}$ ceramic sintered at different temperatures: (a) 780 °C, (b) 800 °C, (c) 830 °C, (d) 850 °C, (e) 880 °C, and (f) the relative density. according to Clausius-Mossotti equation [24,25]: $$\varepsilon_r = \frac{1 + 2b\alpha_D^T/V_m}{1 - b\alpha_D^T/V_m} \tag{2}$$ where, $b=4\pi/3$. The calculated theoretical permittivity of Na₂YMg₂V₃O₁₂ is 11.6. The relative error of Na₂YMg₂V₃O₁₂ is about 6.0% for the measured value and 13.3% for the porosity corrected value, which means that there is another polarization mechanism in the Na₂YMg₂V₃O₁₂ ceramic at microwave region beside ionic and electronic displacement polarization [26]. As the sintering temperature increased, the $Q \times f$ value of Na₂YMg₂V₃O₁₂ ceramic increased and then reached a maximum value of \sim 23,180 GHz sintered at 850 °C. Thereafter, the $Q \times f$ value decreased with further increase in sintering temperature. In general, the factors affecting the dielectric loss at microwave region can be classified into two categories: the intrinsic losses and the extrinsic ones [27]. Usually, the extrinsic dielectric losses caused by the universal defects (impurities, substitution, grain boundaries, grain morphology and shape, secondary phase, pores, etc.) dominate the $Q \times f$ value in ceramics. Until now, it is still difficult to accurately calculate the extrinsic losses in polycrystalline samples [28]. The τ_f values of Na₂YMg₂V₃O₁₂ ceramic varied in the range from -6.1 to -4.1 ppm/°C over the sintering region from 780 °C to 850 °C. A near-zero τ_f value of -4.1 ppm/°C was achieved for sample sintered at 850 °C. Table 1 lists the sintering temperatures and the microwave dielectric properties of a series of garnet vanadates. As shown, all the ceramics have low relative permittivity between 10 and 13. The sintering temperature ($\sim\!850\,^{\circ}\text{C}$) of $Na_2YMg_2V_3O_{12}$ ceramic is competitive to the other garnets. It is worth noting that the temperature coefficient of resonance frequency of $Na_2YMg_2V_3O_{12}$ is near-zero with a value $\sim\!-4.1~\text{ppm}/^{\circ}\text{C}$. The temperature stability, low relative permittivity and relatively high quality factor along with the low sintering temperature make $Na_2YMg_2V_3O_{12}$ a possible candidate in LTCC applications. Fig. 3. ε_r , $Q \times f$, and τ_f values of Na₂YMg₂V₃O₁₂ ceramics sintered at different temperatures from 780 to 880 °C. Table 1 Comparison of microwave dielectric properties of some garnet vanadates ceramics | Composition | S.T. (°C) | ε_r | $Q \times f$ (GHz) | τ_f (ppm/°C) | Reference | |------------------------------------------------------------------|-----------|-----------------|--------------------|-------------------|-----------| | NaCa ₂ Mg ₂ V ₃ O ₁₂ | 915 | 10 | 50,600 | -47 | [16] | | LiCa ₃ MgV ₃ O ₁₂ | 900 | 10.5 | 74,700 | -61 | [17] | | $Ca_5Co_4(VO_4)_6$ | 875 | 10.6 | 95,200 | -63 | [19] | | LiCa ₃ ZnV ₃ O ₁₂ | 900 | 11.5 | 81,100 | -72 | [29] | | $Ca_5Zn_4(VO_4)_6$ | 725 | 11.7 | 49,400 | -83 | [18] | | $Na_2YMg_2V_3O_{12}$ | 850 | 12.3 | 23,180 | -4.1 | This work | Fig. 4. XRD patterns of unfired $Na_2YMg_2V_3O_{12}$ with 15 wt% silver and the cofired sample at 840 $^{\circ}C.$ For chemical compatibility experiment, 15 wt% Ag powders was mixed with Na₂YMg₂V₃O₁₂ ceramic and fired at 850 °C to detect the interaction between the sample and electrode. XRD patterns of the unfired mixture of Na₂YMg₂V₃O₁₂ and 15 wt% Ag Fig. 5. Backscattered electron image micrograph and EDS analysis of the Na₂YMg₂V₃O₁₂ ceramic with 15 wt% silver powder fired at 840 °C. powders and the cofired sample are shown in Fig. 4. From XRD patterns, only the peaks belonging to $Na_2YMg_2V_3O_{12}$ and Ag could be observed without secondary phase detected. In addition, by comparison of the XRD patterns before and after co-firing, it is noted that the relative intensities of the peaks are almost the same. These results suggest no reaction between $Na_2YMg_2V_3O_{12}$ and Ag. This was further confirmed from the backscattered electron image and EDS analysis, as shown in Fig. 5. Two distinct grains could be seen and the larger bright grains were detected to be Ag. ## 4. Conclusions In summary, a cubic garnet structured Na₂YMg₂V₃O₁₂ ceramic was prepared by the conventional solid-state reaction method. Dense Na₂YMg₂V₃O₁₂ ceramic with a relative density of 95.4% could be obtained when sintered at 850 °C. Sr₂NaMg₂V₃O₁₂ ceramic sintered at 850 °C for 4 h, with a permittivity of 12.3, $Q \times f$ value of 23,180 GHz, and a nearly zero τ_f value of -4.1 ppm/°C. Na₂YMg₂V₃O₁₂ was found to be chemically compatible with silver electrode when sintered at 850 °C. All the results indicate that the Na₂YMg₂V₃O₁₂ ceramic is a potential candidate for low-temperature co-fired ceramics technology. ### Acknowledgments This work was supported by the National Natural Science Foundation of China (Nos. 21261007, 21561008, and 51502047), the Natural Science Foundation of Guangxi Zhuang Autonomous Region (Nos. 2015GXNSFBA139234, and 2015GXNSFFA139003), Project of Department of Science and Technology of Guangxi (No. 114122005-28), and Projects of Education Department of Guangxi Zhuang Autonomous Region (Nos. YB2014160, KY2015YB341, and KY2015YB122). #### References [1] Y. Higuchi, Y. Sugimoto, J. Harada, H. Tamura, LTCC system with new high- ε_r and high-Q material Co-fired with conventional low- ε_r base - material for wireless communications, J. Eur. Ceram. Soc. 27 (2007) 2785–2788. - [2] M.T. Sebastian, H. Jantunen, Low loss dielectric materials for LTCC applications: a review, Int. Mater. Rev. 53 (2008) 57–90. - [3] D. Zhou, L.X. Pang, H. Wang, X. Yao, Low temperature firing microwave dielectric ceramics (K_{0.5}Ln_{0.5})MoO₄ (Ln=Nd and Sm) with low dielectric loss, J. Eur. Soc. 31 (2011) 2749–2752. - [4] D. Zhou, L.X. Pang, J. Guo, Z.M. Qi, T. Shao, Q.P. Wang, H.D. Xie, X. Yao, C.A. Randall, Influence of Ce substitution for Bi in BiVO₄ and the impact on the phase evolution and microwave dielectric properties, Inorg. Chem. 53 (2014) 1048–1055. - [5] Q.W. Liao, L.X. Li, X. Ren, X. Ding, New low-loss microwave dielectric material ZnTiNbTaO₈, J. Am. Ceram. Soc. 94 (2011) 3237–3240. - [6] I.M. Reaney, D. Iddles, Mcrowave dielectric ceramics for resonators and filters in mobile phone networks, J. Am. Ceram. Soc. 89 (2006) 2063–2072 - [7] J. Li, C.C. Li, Z.H. Wei, Y. Tang, C.X. Su, L. Fang, Microwave dielectric properties of a low-firing Ba₂BiV₃O₁₁ ceramic, J. Am. Ceram. Soc. 98 (2015) 683–686. - [8] R. Umemura, H. Ogawa, H. Ohsato, A. Kana, A. Yokoi, Microwave dielectric properties of low-temperature sintered Mg₃(VO₄)₂ ceramic, J. Eur. Ceram. Soc. 25 (2005) 2865–2870. - [9] L. Fang, Z.H. Wei, C.X. Su, F. Xiang, H. Zhang, Novel low-firing microwave dielectric ceramics: BaMV₂O₇ (M=Mg, Zn), Ceram. Int. 40 (2014) 16835–16839. - [10] D.K. Kwon, M.T. Lanagan, T.R. Shrout, Microwave Dielectric properties and low-temperature cofiring of BaTe₄O₉ with aluminum metal electrode, J. Am. Ceram. Soc. 88 (2005) 3419–3422. - [11] G. Subodh, M.T. Sebastian, Glass-free Zn₂Te₃O₈ microwave ceramic for LTCC applications, J. Am. Ceram. Soc. 90 (2007) 2266–2268. - [12] M. Valant, D. Suvorov, Processing and dielectric properties of sillenite compounds Bi₁₂MO₂₀-delta (M=Si, Ge, Ti, Pb, Mn, B_{1/2}P_{1/2}), J. Am. Ceram. Soc. 84 (2001) 2900–2904. - [13] D. Zhou, H. Wang, L.X. Pang, C.A. Randall, X. Yao, Bi₂O₃–MoO₃ binary system: an alternative ultra low sintering temperature microwave dielectric, J. Am. Ceram. Soc. 92 (2009) 2242–2246. - [14] M. Valant, D. Suvorov, Chemical compatibility between silver electrodes and low-firing binary-oxide compounds: conceptual study, J. Am. Ceram. Soc. 83 (2000) 2721–2729. - [15] T. Takada, S.F. Wang, S. Yoshikawa, S.J. Jang, R.E. Newnham, Effect of glassadditions on BaO–TiO₂–WO₃ microwave ceramics, J Am Ceram Soc. 77 (1994) 1909–1916. - [16] L. Fang, F. Xiang, C.X. Su, H. Zhang, A novel low firing microwave dielectric ceramic NaCa₂Mg₂V₃O₁₂, Ceram. Int. 39 (2013) 9779–9783. - [17] L. Fang, C.X. Su, H.F. Zhou, Z.H. Wei, H. Zhang, Novel low-firing microwave dielectric ceramic LiCa₃MgV₃O₁₂ with low dielectric loss, J. Am. Ceram. Soc. 96 (2013) 688–690. - [18] G.G. Yao, P. Liu, X.G. Zhao, J.P. Zhou, H.W. Zhang, Low-temperature sintering and microwave dielectric properties of Ca₅Co₄(VO₄)₆ ceramics, J. Eur. Ceram. Soc. 34 (2014) 2983–2987. - [19] G.G. Yao, P. Liu, H.W. Zhang, Novel series of low-firing microwave dielectric ceramics: Ca₅A₄(VO₄)₆ (A⁺²=Mg, Zn), J. Am. Ceram. Soc. 96 (2013) 1691–1693. - [20] H.F. Zhou, Y.B. Miao, J. Chen, X.L. Chen, F. He, D.D. Ma, Sintering characteristic, crystal structure and microwave dielectric properties of a novel thermally stable ultra-low-firing Na₂BiMg₂V₃O₁₂ ceramic, J. Mater. Sci. Mater. Electron. 25 (2014) 2470–2474. - [21] S. George, P.S. Anjana, V. Deepu, P. Mohanan, M.T. Sebastian, Low-temperature sintering and microwave dielectric properties of Li₂MgSiO₄ ceramics, J. Am. Ceram. Soc. 92 (2009) 1244–1249. - [22] A.J. Bosman, E.E. Havinga, Temperature dependence of dielectric constants of cubic ionic compounds, Phys. Rev. 129 (1963) 1593–1600. - [23] D.W. Kim, I.T. Kim, B. Park, K.S. Hong, J.H. Kim, Microwave dielectric properties of (1-x)Cu₃Nb₂O_{8-x}Zn₃Nb₂O₈ ceramics, J. Mater. Res. 16 (2001) 1465–1470. - [24] R.D. Shannon, Dielectric polarizabilities of ions in oxides and fluorides, J. Appl. Phys. 73 (1993) 348–366. - [25] S.H. Yoon, D.W. Kim, S.Y. Cho, H.K. Sun, Investigation of the relations between structure and microwave dielectric properties of divalent metal tungstate compounds, J. Eur. Ceram. Soc. 26 (2006) 2051–2054. - [26] D. Zhou, H. Wang, X. Yao, L.X. Pang, Microwave dielectric properties of low temperature firing Bi₂Mo₂O₉ ceramic, J. Am. Ceram. Soc. 91 (2008) 3419–3422. - [27] C.F. Tseng, Microwave dielectric properties of a new Cu_{0.5}Ti_{0.5}NbO₄ ceramics, J. Eur. Ceram. Soc. 35 (2015) 383–387. - [28] D. Zhou, C.A. Randall, H. Wang, X. Yao, Microwave dielectric properties of Li₂WO₄ ceramic with ultra-low sintering temperature, J. Am. Ceram. Soc. 94 (2011) 348–350. - [29] C.X. Su, L. Fang, Z.H. Wei, X.J. Kuang, H. Zhang, LiCa₃ZnV₃O₁₂: a novel low-firing, high Q microwave dielectric ceramic, Ceram. Int. 40 (2014) 5015–5018.